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Moving with light

You probably already know that only massless objects move at c (in fact
they are confined to this speed).
Remember that it only makes sense to talk about relative velocity. If I
wanted to move at c , couldn’t I just look at a photon? The photon is
moving at speed c , and I am at rest relative to it, so from it’s point of view,
I would be moving at c!

By writing precisely what is going on, we can find out the issue

In our proper frame, we are not moving, and we observe the photon to
be moving at speed c

In the photon’s proper frame, it is not moving, and it sees us as
moving at speed c

No proper frame exists for a photon (second postulate)
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Matrix Multiplication

A linear transformation T on the vector space Rn satisfies A n ×m matrix
transforms vectors in Rm into vectors in Rn. So for example, 2 3

1 2
12 0

(5
6

)
= 5

 2
1

12

+ 6

3
2
0

 =

28
17
60

 .

The nth column of a matrix shows where en transforms to. So

(
5
6

)
can

really be decomposed into 5

(
1
0

)
+ 6

(
0
1

)
= 5e1 + 6e2, and then we can

apply A to each basis vector individually.
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Dot Product
The dot product between two vectors x = xµ and y = yµ is

n∑
k=1

xkyk = xµyµ

where summation over µ is implied over repeated indices (Einstein
summation convention). For example the dot product in R3 looks like2

3
4

 ·
1

2
1

 = 2 + 6 + 4 = 12.

The dot product can be written in Rn as

x · y = xT y

so one can dispense with the dot product and redefine it as a linear
transformation xT acting on y . So from the previous example2

3
4

 ·
1

2
1

 = (2, 3, 4)

1
2
1

 .
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Tensors

The dual space of the vector space V is denoted by V V and is the set of all
linear maps from V to R. In other words, it defines a dot product where the
product 2

3
4

 ·
1

2
1

 = (2, 3, 4)

1
2
1

 .

can be thought of as the linear transformation (2, 3, 4) which acts on a
vector and spits out a number.

A tensor is a generalization of a matrix. Previously we defined a linear
transformation, represented by a matrix, to be a mapping from Rm to Rn.
Tensors are mappings between vector spaces or between dual vector spaces,
or between both.
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Inner Product

The generalization of the dot product is called the inner product and
satisfies the following

1 〈v + u,w〉 = 〈v ,w〉+ 〈u,w〉
2 for scalar α, 〈αv ,w〉 = 〈v , αw〉 = α〈v ,w〉
3 〈v ,w〉 = 〈w , v〉
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Invariant Interval

We have not established a general framework (the problems are difficult
mainly because you use heuristics) The goal of this lecture is to establish
precisely how a set of coordinates transforms from one reference frame to
another Along the way, we will learn about velocity addition, spacetime
diagrams, momentum, and optical effects
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Invariant Interval
We want to find a quantity that does not change and involves length and
time.

We know that all observers agree on the speed of light. What equation
relates distance, velocity, and time?

vt = d

Consider the displacement of light, from point P1 to P2. Using the above
equation,

c∆t =
√

(∆x)2 + (∆y)2 + (∆z)2 =⇒ c2dt2 − dx2 − dy2 − dz2 = 0,

which is something everyone can agree on. Note: One may use either the
differential or displacement form. So if we assume that the initial
coordinates is null,

c2t2 − x2 − y2 − z2 = 0.

Furthermore, the c is becoming very annoying, so one can switch to more
natural units with c = 1 so that

t2 − x2 − y2 − z2 = 0.
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Invariant Interval
The particular quantity above was found between the events of the light
leaving P1 and reaching P2. Remember that the goal is to find an invariant
quantity in any situation, i.e. between any two events.

Put

s2 = t2 − x2 − y2 − z2

and call it the interval. The interval between two events is the distance
between them within the four-dimensional space with axes t, x , y , z (note
that the geometry of this space is not euclidean, so distances are not
defined as normal). Events are called world points and the paths they trace
out are called world lines.

x, y, z

t
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Proof of Invariance
The K and K ′ frames have a relative velocity of v and are observing two
events, infinitesimally close to each other.

ds2 and ds ′2 are of the same
order. For light, ds2 = ds ′2 = 0. Because they are of the same order,

ds2 = ads ′2

for some constant a. Now all we need to show is a = 1.
Because of homogeneity of space, a does not depend on coordinates, and
because of isotropy, a only depends |v |. So we write a as a function of
relative speed: a(v). Consider frames K ,K1,K2 with relative speeds
v1, v2, v12.Then

ds2 = a(v1)ds21 = a(v2)ds22 , ds21 = a(v12)ds22 =⇒ a(v2)

a(v1)
= a(v12).

This does not make sense because we could have the frames moving at
different angles to each other, but this formula does not depend on
angles.The symmetrical way of resolving this is a(v) = 1 for all v . Thus
ds2 = ds ′2. The interval is a measurement that everyone can agree on.
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Lightlike

There are three cases: s2 < 0, s2 = 0, s2 > 0.

s2 = 0 is called lightlike.
Graphing

t2 = x2

gives

x

t

The cone above is called the light cone. Event 1 is the origin and event 2
lies somewhere on the lines t = ±x .
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Timelike

s2 > 0 =⇒ t2 − x2 − y2 − z2 > 0 =⇒ t2 > l2

t2 − x2 > 0 looks like

x

t

To see what this implies, it helps to switch to unnatural units:

(ct)2 > l2.

Now it is pretty clear what this means; the distance that light travels during
the time between the events is greater than the spacial distance between
the events. Two such events are called timelike.
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Timelike

x

t

Two timelike events cannot occur at the same time in any reference frame:

=⇒ t = 0 =⇒ 0 > x2.

Timelike events always occur at different times. Furthermore, an event in
the top cone occurs after event 1 in all reference frames (absolute future),
and an event in the bottom cone occurs before event 1 in all reference
frames (absolute past).
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Spacelike

(ct)2 < l2

so even light does not have enough time to travel the distance between the
two events. This is the white area in

x

t

Spacelike events are always in different locations (why?). There exists a
frame in which the events are simultaneous. All events in the exterior of the
light cone cannot affect event 1.
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Classification via inner products
We shall rename the coordinates:

x0 = t, x1 = x , x2 = y , x3 = z .

Greek suffixes run over 0, 1, 2, 3 whereas Latin suffixes run over 1, 2, 3, so
xµ = (x0, x i ). From the point xµ, consider the small displacement xµ + dxµ.

(dx0)2 − (dx1)2 − (dx2)2 − (dx3)2

is invariant.
Any 1-tensor Aµ that transforms in a way that keeps the its components
invariant in the above way is called a contravariant 4-vector. We define a
Lorentzian inner product so that

〈A,A〉 = (A0)2 − (A1)2 − (A2)2 − (A3)2.

We can create a more convenient notation by defining

A0 = A0, Ai = −Ai ,

so that we can write
AµAµ.
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so that we can write
AµAµ.
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Boosts

There is an additional (temporal) dimension around which one can perform
a rotation. This is not a pure spatial rotation like considered before, so it is
called a boost. 

coshψ sinhψ 0 0
sinhψ coshψ 0 0

0 0 1 0
0 0 0 1



ct
x
y
z

 =


ct ′

x ′

y ′

z ′

 .

From this we get the two equations

ct coshψ + x sinhψ = ct ′, ct sinhψ + x coshψ = x ′.

We can check that this boost keeps the interval invariant.
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Invariance of interval under boost

c2t2 − x2 − y2 − z2 =c2t ′2 − x ′2 − y ′2 − z ′2

=c2t ′2 − x ′2 − y ′2 − z ′2

=(ct coshψ + x sinhψ)2 − (ct sinhψ + x coshψ)2 − y ′2 − z ′2

=(ct)2 cosh2 ψ + x2 sinh2 ψ + 2ctx coshψ sinhψ

− (ct)2 sinh2 ψ − x2 cosh2 ψ − 2ctx sinhψ coshψ − y2 − z2

=(ct)2(cosh2 ψ − sinh2 ψ) + x2(cosh2 ψ − sinh2 ψ)− y2 − z2

=c2t2 − x2 − y2 − z2
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Lorentz Transformations

In order to continue with the derivation, we need to find a way of
eliminating the angles from the equations.

Consider the origin of the K system.

K ′ K
v

x = 0 and x ′ = vt ′. Substituting these values into the equations, we
get:

ct coshψ = ct ′, ct sinhψ = vt ′,

and dividing the second equation by the first we get

v

c
= tanhψ =⇒ sinhψ =

v

c
coshψ.
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Lorentz Transformations

Now using the classic hyperbolic identity cosh2 ψ− sinh2 ψ = 1, we get

cosh2 ψ −
(v
c

coshψ
)2

= 1 =⇒ coshψ =
1√

1− v2

c2

= γ

as well as
sinhψ =

v

c
γ.

Now all that remains to do is sub these back into the original rotation
equations, to get

ct ′ = γ
(
ct +

xv

c

)
, γx ′ = γ(tv + x).
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Lorentz Transformations

Thus the Lorentz Transformation equations are

t ′ = γ
(
t +

xv

c2

)
x ′ = γ(x + tv)

y ′ = y

z ′ = z

(1)

and
t ′ = γ(t + xv)

x ′ = γ(x + tv)

y ′ = y

z ′ = z

(2)

in natural units
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Velocity Addition

Composition of velocity cannot be the same as in Newton physics since
there is a speed limit for light

Image being on a nonaccelerating train as you watch a fast car driving
parallel to the train

The velocity of the car relativity to you is v and the velocity of the
train relative to the ground is u

The velocity of the car relative to the ground is then

u + v

1 + uv
c2

Note that this looks like the formula for addition in tanh :

tanh(x + y) =
tanh x + tanh y

1 + (tanh x)(tanh y)
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