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Chapter 1

Relativistic Electrodynamics

§ 1 Basics of Special Relativity

Solution: (Blake Law and Noah Law) The Barn Paradox

Farmer’s Perspective: From the farmer’s perspective, who is stationary, which we will describe
as frame F, he will see an apparent length contraction of the pole as follows, defining x′

2 and
x

′
1 as the end and starting point of the pole of length L (where L is the length of barn (l)

plus some positive length) in the moving frame F1:

L = x
′
2 − x

′
1 =

x2 − vt2 − x1 + vt1
γ

L =
L0

γ

For relatively large values of v, this contraction will become apparent to the farmer, being
able to fully fit the pole inside the barn all at the same time in his perspective and reference
frame and subsequently leaving all in one piece.

Runner’s Perspective: A length contraction of the barn (length l) will occur for the runner,
modeled by the following equation:

l′ = l
√
1− β2 = l0

γ

From the runner’s perspective, which we will describe as in frame F’, the Lorentz transformation
of time is as follows, where t is the measured time by the moving frame and x is the distance
of some object from the runner:

t′ =
t− vx

c2√
1− v2/c2

= γ(t− vx

c2
)

1HyperPhysics: Georgia State University. Lorentz Transformation. Accessed 25 November 2017.
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4 § 1. Basics of Special Relativity

From this we can conclude in the runner’s perspective, he will enter the barn with the furthest
right door closing and the left door open, because the distance x is greater for the furthest
right door, making the quantity t′ smaller. As the runner moves through the barn, the right
door opens allowing for the right end of the pole to exit the barn. As the left end of the pole
clears the left door to the barn, the left door closes. The event of the doors closing does not
occur at the same time as evidenced by relevant equations and the fact that if they did, the
pole would be unable to go through (as it would be crushed). This demonstrates the fact that
changing reference frames does not guarantee identical results.

Therefore, this ’paradox’ can be explained by the fact that there is a loss of simultane-
ity because of the magnitude of speed of the runner, or that from one perspective time is
dilated and the barn is contracted, where the doors close and different times, while from the
other perspective the length of the pole is contracted, seemingly not hitting the walls of the
barn.

Solution: (Dimitrios) Expansion of the Spacetime Interval and Proof of its In-
variance

Let s2 be the spacetime interval between two events in the frame K and let s′2 be the
spacetime interval between the same two events in the proper frame K ′, which is inertial to
the frame K.

ds2 = dxµdx
µ

=
[
−cdt dx dy dz

] 
cdt
dx
dy
dz


= −c2dt2 + dx2 + dy2 + dz2

We use the Lorentz transformation equations on ds′ to show that ds′2 = ds2.

ds2 = −c2dt′2 + dx′2 + dy′2 + dz′2

= −γ2(cdt− βdx)2 + γ2(dx− vdt)2 + dy2 + dz2

= γ2(v2dt2 + dx2 − v2

c2
dx2 − c2dt2) + dy2 + dz2

=
c2

c2 − v2

(
dt2(v2 − c2) + dx2

c2
(c2 − v2)

)
+ dy2 + dz2

= −c2dt2 + dx2 + dy2 + dz2.

Solution: (Dimitrios) Time Dilation

Let dx′ = dy′ = dz′ = 0 since there is no change in the physical location of the events in the
proper frame K ′. By the equality of the spacetime interval, we have

−c2dt′2 = −c2dt2 + dx2 + dy2 + dz2. (1)



Chapter 1. Relativistic Electrodynamics 5

The inverse Lorentz transformation equations can be found by taking the inverse of the matrix[
γ −γβ
−γβ γ

]−1
=

[
γ γβ
γβ γ

]
.

Note that dy = dy′ and dz = dz′. We apply these equations to the right hand side of (1):

−c2dt′2 = −c2dt2 + γ2(dx′ + βcdt′)2

−c2dt′2 = −c2dt2 + γ2β2c2dt′2

dt′2 = dt2 − γ2β2dt′2

dt′2(1 + γ2β2) = dt2

dt′
√
1 + γ2β2 = dt

dt′

√
1− β2 + β2

1− β2
= γdt′ = dt

Since γ ≥ 1 for v ≤ c, the equation γdt′ = dt implies that the a person in the K frame
experience a longer period of time than the proper time of the K ′ frame; if the K person were
to compare his clocks with the clock in the K ′ frame, he would find that it is slow. Clocks in
Tokyo and Kyoto are synchronized. If you travel on a bullet train from Kyoto to Tokyo, as
you step out of the train you will need to increase the time on your watch to match the time
in Tokyo.

Solution: (Dorian) Length Contraction

We will use a thought experiment to derive length contraction. Let there be a perfectly
cylindrical pole travelling at some speed v relative to an observer. At some time t, this
observer records the location of the ends of the pole at x′1 and x′2 and uses that data to find
the pole’s length, x′2 − x′1. Meanwhile, another observer travelling at the same speed as the
perfectly cylindrical pole records the location of the ends of the pole at x1 and x2 and uses
that information to find the pole’s proper length, x2 − x1. In order to derive the formulas for
length contraction , we use

x1 = γ(x′1 + vt′1)

x2 = γ(x′2 + vt′2)

, subtracting the first equation from the second, and obtain x2 − x1 = γ(x′2 − x′1 + vt′1 − vt′2).
Since we are measuring distance at the same time, t′1 = t′2, so x2 − x1 = γ(x′2 − x′1), which
can be rewritten as Lp = γL. To see this effect, let observer one be travelling on a space ship
at .5c between Planet Alpha and Planet Omicron, which are stationary relative to each other,
and let observer two be stationary on Planet Alpha. Both attempt to measure the distance
between Planet Alpha and Planet Omicron. Observer two times how long it takes observer
one to get to Planet Omicron from Planet Alpha and measures it to be 2 hours. Therefore,
he measures the distance to be .5c · 2 hours ≈ 1341233258.77 miles. Observer one also uses a
similar methodology. He finds it takes him 2hours

γ ≈ 1.73205086 hours to travel between the
two planets. Therefore, he computes the distance to be 1.73205086 · .5c ≈ 1161542109.66 miles.
Using the formula for length contraction, we indeed find that 1341233258.77 ≈ γ1161542109.66

Solution: (Dorian) Four-Velocity



6 § 1. Basics of Special Relativity

a) Proper time has to be used because time is not an invariant under the Lorentz transforma-
tion and because it is consistent through multiple systems. Using nonproper time would
result in inconsistencies in translating between systems.

b) Let (u′)µ =
(
c, dx

′

dτ ,
dy′

dτ ,
dz′

dτ

)
and uµ =

(
c, dxdτ ,

dy
dτ ,

dz
dτ

)
. Using the Lorentz transformation,

we find that

(u′)µ =

(
c,

dx
dt − v
1− vdx

c2dt

,
γdy

dt
,
γdz

dt

)
.

Let u = dx
dt and u′ = dx′

dt′ = dx′

dτ . Comparing the two expressions and replacing dx
dt with u,

we find
u′ =

u− v
1− uv

c2
.

Through simple algebraic rearrangement, we find

u =
v + u′

1 + vu′

c2

.

Solution: (Dorian) Invariance of Energy and Momentum

We are given that the momentum four-vector is

pµ =

(
E

c
, px, py, pz

)
= m0u

µ

=

(
cm0,m0

dx

dτ
,m0

dy

dτ
,m0

dz

dτ

)
.

Since we know that the spacetime interval is invariant, and p = m0
dxµ

dτ , we are motivated
to find the dot product p · p. As before, we use the Minkowski metric to change from a
contravariant to a covariant vector via the metric of the space. Evaluating and using the
previously found expansion of the spacetime interval, we have

pµp
µ = m2

0

−c2dt2 + dx2 + dy2 + dz2

dτ2

Cancelling, we obtain
pµp

µ = −(m0c)
2.

This expression is of course equivalent to −
(
E
C

)2
+ p2x + p2y + p2z = −

(
E
C

)2
+ p2, evaluated

using the same Minkowski metric. Rearranging terms, we therefore have

E2 = p2c2 + (mc2)2

Solution: (Dimitrios) Four-Acceleration
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By definition,

ds2 = dxµdx
µ =⇒ dxµ

ds

dxµ

ds
= 1

Since the interval is timelike, ds = cdτ , so dτ ∝ ds, which implies that

dxµ
dτ

dxµ

dτ
= c2.

Taking a derivative over the dot product and noting that the four-acceleration is wµ = duµ

dτ ,
we have

d

dτ

(
dxµ
dτ

dxµ

dτ

)
= 2

dxµ
dτ

d2xµ

dτ2
= 0 =⇒ uµw

µ = 0.

Since we did not involve the mass of the object in the solution, this holds true for an arbitrary
mass m.

§ 2 Relativistic Electrodynamics and Tensors

Solution: (Dimitrios) The Continuity Equation

a) The amount of charge in a volume is ∫
V
ρdV.

Any charge leaving the volume passes through the surface, and we can write that the
current over the closed surface is ∮

~j · da.

In a closed surface, the outward direction is positive, so the surface integral is positive, but

d

dt

∫
V
ρdV =

∫
V

∂ρ

∂t
dV

is negative since the amount of charge in the volume is decreasing. By the local conservation
of charge, the current flowing through the surface is equal to the negative change in charge
in the volume per unit time: ∫

V

∂ρ

∂t
dV = −

∮
~j · da.

Applying Gauss’s theorem on the right hand side, we have∫
V

∂ρ

∂t
dV = −

∮
~∇ ·~jdV =⇒

∫ (
~∇ ·~j + ∂ρ

∂t

)
dV = 0.

Since this is true for any volume, the integrand is 0, so

~∇ ·~j = −∂ρ
∂t
.
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b) The 4-current is jµ = (cρ,~j). The 4-divergence of the 4-current is

∂µj
µ = ~∇ ·~j + ∂ρ

∂t
= 0,

by the continuity equation2. This is a statement of charge conservation. The 4-divergence
is Lorentz invariant, so we have shown that charge is conserved in any frame of reference.

Solution: (Dimitrios) Maxwell’s Equations in Terms of the Potentials

a) A well known vector calculus identity states that ~∇ · (~∇× ~Q) = 0 (this can be seen since
~∇× ~Q is perpendicular to ~∇). Maxwell’s 2nd equation reads

~∇ · ~B = 0,

which implies that ~B is the curl of some field; there exists a vector field ~A such that

~B = ~∇× ~A. (2)

Faraday’s law

~∇× ~E = −∂
~B

∂t

can be rewritten with ~B = ~∇× ~A:

~∇× ~E = − ∂

∂t
~∇× ~A =⇒ ~∇×

(
~E +

∂ ~A

∂t

)
= 0.

Using the well known fact that ~∇× (~∇A) = 0 we can write that

~E +
∂ ~A

∂t

is the gradient of some vector field, called −φ. Now we have

~E +
∂ ~A

∂t
= −~∇φ =⇒ ~E = −~∇φ− ∂ ~A

∂t
. (3)

b) Taking the divergence of (3) gives

~∇2φ+
∂

∂t
(~∇ · ~A) = −~∇ · ~E = − ρ

ε0

by Maxwell’s first equation (Gauss’s law). In order for

~∇2φ+
∂

∂t
(~∇ · ~A)

to look like

�2φ =
1

c2
∂2φ

∂t2
− ~∇2φ

2Jackson, J. D. (2013). Classical Electrodynamics. Hoboken, NY: Wiley.
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we put ~∇ · ~A = − 1
c2
∂φ
∂t (which is allowed due to gauge freedom). Now we have

�2

(
φ

c

)
=

1

c3
∂2φ

∂t2
− 1

c
~∇2φ =

ρ

cε0
=
cρ

µ0

for ε0 = µ0
c2
.

Taking the curl of (2) we get

~∇× ~B = ~∇× (~∇× ~A) = ~∇(~∇ · ~A)− ~∇2 ~A = − 1

c2
∂

∂t
~∇φ− ~∇2 ~A

but since Maxwell’s last equation is

~∇× ~B =
1

c2

(
~j

ε0
+
∂E

∂t

)

we can isolate ~∇2 ~A:

~∇2 ~A = − 1

c2

(
∂

∂t
~∇φ+

~j

ε0
+
∂E

∂t

)
.

Now we differentiate (3) to get

∂ ~E

∂t
= − ∂

∂t
~∇φ− ∂2 ~A

∂t2
=⇒ 1

c2
∂2 ~A

∂t2
= − 1

c2

(
∂ ~E

∂t
+
∂

∂t
~∇φ

)
.

Now we put together the d’Alembertian and notice significant cancellation

�2 ~A =
1

c2
∂2 ~A

∂t2
− ~∇2 ~A =

1

c2

(
−∂

~E

∂t
− ∂

∂t
~∇φ+

∂

∂t
~∇φ+

~j

ε0
+
∂E

∂t

)
=

~j

c2ε0
=

~j

µ0
.

c) i) We may write the 4-gradient as

∂µ =

(
∂

∂x0
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
=

(
1

c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
=

(
1

c

∂

∂t
, ~∇
)
.

Furthermore, we have

∂µ =

(
1

c

∂

∂t
,−~∇

)
so that

∂µ∂
µ = ∂µ∂µ =

1

c2
∂2

∂t2
− ~∇2 = �2.

Since the d’Alembertian is the contraction of a four-vector, so it is Lorentz invariant.
From the continuity equation, we have

∂µj
µ = 0,

which implies that jµ is a four-vector. Since, as shown in part d),

�2Aµ =
jµ

µ0

and �2 is Lorentz invariant, Aµ must be a four-vector.
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ii) Let the K and K ′ be two inertial frames. The event P has coordinates (0, 0, 0, 0) and
the retarded event Q has coordinates (ct, x, y, z). r =

√
x2 + y2 + z2 is the distance

from dV to the event P . When considering light moving between the two events, the
interval is zero, and both t and t′ are negative since Q is retarded. From the Lorentz
transformation equations, we get

r′ = −ct′ = rγ

(
−ct
r
+ β

x

r

)
.

Since x
r is cos θ where θ is the angle between PQ and the x−axis, we have

r′ = rγ (1 + β cos θ) .

Using the Lorentz equations and dt = −dr
c = −dx

c cos θ and noting that according to
the Lorentz transformations laws, dV ∝ dx, we have

dV ′ = γdV (1 + β cos θ) .

Now dividing the equations for dV ′ and r′ we find that dV ′/r′ = dV/r, proving that
dV/r is Lorentz invariant. Since

φ =

∫
ρ
dV

r
, ~A =

∫
~j
dV

r
,

are the components of Aµ, Aµ must be invariant under the Lorentz transformation,
and is thus a 4-vector. 3

d)

�2Aµ =

(
�2φ

c
,�2 ~A

)
=

(
cρ

µ0
,
~j

µ0

)
=
jµ

µ0
.

Solution: (Dorian) Forces in Different Frames

We begin this problem by noticing that the force component perpendicular to particle’s rest
frame is γ times as great the force component in the unprimed frame. Furthermore, we
notice that the force component parallel to the particle’s motion is the same. The force
in the reference frame of the particle is then F ′‖ = qE‖ while from the unprimed reference
frame the force is Fe‖ = qE‖. Looking at the perpendicular force components, we find that
F ′⊥ = qE′⊥ = qγE⊥ while in the unprimed reference frame, Fe = 1

γ qγE⊥ = qE⊥. Therefore
F ′ = F 4.

Solution: (Dorian) Particles in a Wire

a) The Lorentz force is given by
~F = q+ ~E + q+~v × ~B,

3Fitzpatrick, R. (2006, February 02). Retarded Potentials. Retrieved November 26, 2017.
4Electricity and Magnetism Retrieved December 3, 2017
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where ~E is the electric field and ~B is the magnetic field. The negative and positive particles
in the wire have the same charge density, so the net charge is 0 and q+ feels no electric
force. Thus,

~F = q+~v × ~B.

Ampere’s law for a wire says that5

~B = ~y
~I

2πε0c2r

where ~y is a unit vector perpendicular to the vector ~r (~r is perpendicular to the wire and
extends to q+). Now we have, with ~x = ~v

v ,

~F = q+~v × ~B = ~x× ~y
~Iqv

2πε0rc2
= −~z

~Iqv

2πε0rc2
.

b) First, we need to use the Einstein velocity addition laws developed in 2.1.5 (b) to find the
speed of the electrons from the particle’s frame of reference. Letting β = v

c , β0 =
u
c , and

β′0 =
u′

c , we find that

β′0 =
β0 − β
1− ββ0

and
γ′0 = γγ0(1− ββ0).

We can now find the linear density of negative charge in the wire in the frame of reference
of the particle:

λ′ = γλ0
λ0
γ0
γγ0(1− ββ0) = γββ0λ0.

Using Gauss’s law, we find

E′r =
γββ0λ0
2πε0r′

.

Finally, we find the force that the particle experiences to be

F ′y = qE′y = −
qγββ0λ0
2πε0r′

considering that the field points in the negative direction at the particle’s location 6. In
order to compare with the result from part a, we use I = −λ0β0c, β = v

c , and r
′ = r (the

distance from the wire to the charge is the same from both the lab’s frame of reference
and the particle’s frame of reference), which gives

F ′y =
Iγv

2πε0rc2
.

Comparing with the result from part (a), we see the that the force on the particle form the
particle’s perspective is γ times the force on the particle from the lab’s perspective. From

5Feynman, R. P. (2011). The Feynman lectures on physics (Vol. 2). New York: BasicBooks.
6Electricity and Magnetism Retrieved December 3, 2017
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this, we understand that magnetic and electric forces are both parts of the electromagnetic
force, which is invariant under coordinate transformations. Thus, the unification of
electricity and magnetism are sound under Einstein’s theory of relativity 7.

Solution: Dimitrios and Dorian The Electromagnetic Field Tensor

a) (Dimitrios and Dorian) Using 3.3.1a, ~B = ~∇× ~A. Expanding, we get

~B =

(
∂Az
∂y
− ∂Ay

∂z
,
∂Ax
∂z
− ∂Az

∂x
,
∂Ay
∂x
− ∂Ax

∂y

)
.

Since ~E = −~∇φ− ∂ ~A
∂t , we expand ~E and get

~E =

(
−∂Ax

∂t
− ∂φ

∂x
,−∂Ay

∂t
− ∂φ

∂y
,−∂Az

∂t
− ∂φ

∂z

)
.

Using covariant notation we have

~B = (−(∂2A3 − ∂3A2),−(∂3A1 − ∂1A3),−(∂1A2 − ∂2A1))

and
~E = c(−(∂0A1 − ∂1A0),−(∂0A2 − ∂2A0),−(∂0A3 − ∂3A0)).

b) (Dorian) By inspection, the electromagnetic field tensor can be written as 8

Tµν = ∂µAν − ∂νAµ.

c) (Dimitrios) When the two indices are flipped, we have

Tνµ = ∂νAµ − ∂µAν

because the tensor is antisymmetric. When µ = ν, we have

Tνν = ∂νAν − ∂νAν = 0.

The fact that Tνν = 0 accounts for 4 components, the ones on the diagonal, and Tνµ = −Tµν
additionally implies that we only need to find 6 elements of Tµν in order to find the rest.
Tµν holds 16 components total.

d) (Dimitrios)

T21 = ∂2A1 − ∂1A2 =
∂Ay
∂x
− ∂Ax

∂y
= Bz

T10 = ∂1A0 − ∂0A1 =
∂

∂x

φ

c
+
∂Ax
c∂t

= −Ex
c

T20 = ∂2A0 − ∂0A2 =
∂

∂y

φ

c
+
∂Ay
c∂t

= −Ey
c

7The Feynman Lectures on Physics Volume II retrieved on December 3, 2017
8Lecture 13 Notes, Electromagnetic Theory II Retrieved December 3, 2017
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T30 = ∂3A0 − ∂0A3 =
∂

∂z

φ

c
+
∂Az
c∂t

= −Ez
c

T31 = ∂3A1 − ∂1A3 = −
∂Ax
∂z

+
∂Az
∂x

= −By

T32 = ∂3A2 − ∂2A3 = −
∂Ay
∂z

+
∂Az
∂y

= Bx

Tµν =


0 Ex

c
Ey
c

Ez
c

−Ex
c 0 −Bz By

−Ey
c Bz 0 −Bx

−Ez
c −By Bx 0


Solution: (Dorian) Moving Solenoid

The magnetic field of the long solenoid positioned in frame F is

Bx = µ0nI.

Note that n represents the number of turns per unit length of the solenoid and I represents
the current travelling through the solenoid. Suppose that observer one is still with respect to
the solenoid and that the solenoid is moving along the x axes relative to observer two. Using
previously derived formulas for length contraction, we have

n′ = γn.

Using previously derived formulas for time contraction, we have

I ′ =
1

γ
I.

Therefore,

B′x = µ0γn
1

γ
I = µ0nI = Bx.

Since the magnetic field does not change with motion, the electric field also does not change,
and so we have9

E′x = Ex.

Solution: (Dorian) Correction for Maxwell’s Equations

The equation
~∇× ~B = uJ

becomes inaccurate when
∂ ~E

∂t

is not negligible. For example, a capacitor that discharges through a resistor does not have a
constant electric field.10

9Griffiths, D. J. (1999). Introduction to Electrodynamics. Upper Saddle River, NJ: Prentice Hall.
10Griffiths, D. J. (1999). Introduction to Electrodynamics. Upper Saddle River, NJ: Prentice Hall.


