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Lagrangians



When Should the Lagrangian Be Used

Since the Lagrangian is consistent with Newtonian mechanics, a
Lagrangian can always be used to solve problems in classical
mechanics. However, in almost any semi-complicated problem, a
Lagrangian reformulation simplifies work greatly. The Lagrangian is
particularly important to master because its symmetric properties
yield it essential in quantum mechanics and modern physics.
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Virtual Displacement and Work

Virtual Displacement: Infinitesimal change of coordinates δri at
some time t

We restrict ourselves to conservative forces - nonconservative forces
such as friction are the result of macroscopic interactions and are
thus pseudo forces. Thus, we lose little in this restriction.
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Principle of Virtual Work

∑
i

F
(a)
i · δri = 0
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Generalized Force

Qj =
∑
i

Fi ·
∂ri
∂qj
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Lagrange–d’Alembert Principle

∑
i

(F
(a)
i − ṗi) · δri = 0
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Optimization

Easy Mistake: “In order to minimize the action, let’s take the
derivative of the action with respect to t. By the fundamental
theorem of calculus, this is L(t1)− L(t0). To find the critical points,
we set L(t1)− L(t0) = 0. One of the solutions minimize the path.”

Why is this wrong?
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Derivation of the Euler-Lagrange Equations

Consider
S =

∫ t2

t1

L(q, q̇, t)dt

Let q(t) minimize the action. Then δq(t1) = δq(t2) = 0. The difference
in action of a transform of q 7→ q + δq is

δS = δ

∫ t2

t1

L(q, q̇, t)dt = 0
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Derivation of the Euler-Lagrange Equations

Effecting the variation, we have∫ t2

t1

(
∂L
∂q

δq +
∂L
∂q̇

δq̇

)
dt = 0

Integrating the second term by parts with δq̇ = dδq
dt , we have

δS =
[∂L
∂δ̇

δq
]t2
t1
+

∫ t2

t1

(
∂L
∂q

− d

dt

∂L
∂q̇

)
δqdt = 0
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Lagrange’s Equations

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= 0
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The Principle of Least Action

Define the action to be

S ≡
∫ t1

t0

T − V︸ ︷︷ ︸
Lagrangian

dt

where T is kinetic energy and V is potential energy.

Key Concept: Objects move along paths which minimize the action.
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Single Particle

Show the equivalence of Newton’s equations of motion with the
Lagrangian in the case of a simple particle in space, using cartesian
coordinates.
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Atwood’s Machine

Use the Lagrangian to derive the acceleration of the conservative
system of the Atwood machine with holonomic, scleronomous
constraints
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Mass-Spring Problem

Derive Hooke’s law using the Euler-Lagrange equations
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Pendulum Problem (Morin)

Consider a pendulum made of a spring with a mass m on the end.
The spring is arranged to lie in a straight line (which we can arrange
by, say, wrapping the spring around a rigid massless rod). The
equilibrium length of the spring is l. Let the spring have length
l + x(t), and let its angle with the vertical be θ(t). Assuming that the
motion takes place in a vertical plane, find the equations of motion
for x and .
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Noether’s Theorem

Every differentiable symmetry of the action of a physical system has
a corresponding conservation law.
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Extension to Non-conservative forces

Rayleigh’s Dissipation Function:

F =
1
2
∑
i

(kxv
2
ix + kyv

2
iy + kzv

2
iz)
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Hamiltonians



Definition

Unlike the Lagrangian, the Hamiltonian is defined to be the sum of
kinetic energy and potential energy. It describes the first-order
equations of motion and can be solved in a set of 2n, coupled,
first-order differential equations
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Derivation via the Legendre Transformation

Recall that the Lagrangian is given by

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= 0

In order to find the Hamiltonian, we need to change variables from
(q, q̇, t) to (q, p, t). We can do this via the Legendre Transformation.
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Derivation via the Legendre Transformation

Find the differential of the Lagrangian, L (q, q̇, t)
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Derivation via the Legendre Transformation

Find the differential of the Lagrangian, L (q, q̇, t)

dL =
∂L
∂qi

dqi +
∂L
∂q̇i

dq̇i +
∂L
∂t

dt

Note that momentum is defined as pi = ∂L
∂q̇i
. Substitute momentum

into the Lagrange equation to get the differential.
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Legendre Transformation

dL = ṗidqi + pidq̇i +
∂L
∂t

dt

The Hamiltonian is generated by the Legendre transformation.

H(q, p, t) = q̇ipiL(q, q̇, t)
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Find the Differential of the Hamiltonian

dH = q̇idpi − ṗidqi −
∂L
∂t

Note that we can also write

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi +

∂H

∂t
dt
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Canonical Hamiltonian Equation
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Conclusion



Importance

Lagrangians and Hamiltonians are critical in quantum mechanics
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